PHYS 3053: Physical Mechanics II
Problem Set 2 — Due September 6

1) Show that $e^{i\theta} = \cos \theta + i \sin \theta$, $i = \sqrt{-1}$. (This is Euler’s formula.)

HINT: Apply the Taylor series of every function.

2) An underdamped harmonic oscillator has the equation of motion of the form

$$\left(\frac{d^2}{dt^2} + 2\gamma \frac{d}{dt} + \omega_0^2\right)x(t) = 0$$

where $\omega_0 = \sqrt{k/m}$, $k =$ the spring constant, $m =$ mass, and $\gamma < \omega_0$. The solution of this equation can be expressed as $A e^{-\gamma t} \cos(\omega t + \phi)$ with $\omega = \sqrt{\omega_0^2 - \gamma^2}$. Derive expressions for A and ϕ with the initial conditions $x_0 = x(0)$ and $v_0 = v(0)$ at $t = 0$.

3) (a) An undamped electric circuit is described by the equation

$$L \frac{d^2Q}{dt^2} + \frac{Q}{C} = 0,$$

where $Q =$ charge, $L =$ inductance, and $C =$ capacitance. What are the angular frequency, the frequency, and the period of this oscillator?

(b) Now suppose we have the same circuit except we introduce a resistor with resistance R. In the underdamped case, the circuit still exhibits oscillatory behavior. What is the new angular frequency, the frequency, and the period? Is the oscillation faster or slower?

(c) As the resistance R is increased, the period of oscillation increases, eventually going to infinity. What is the value of R for which the period becomes infinite, and to what kind of damping does this situation correspond?

4) When an object of mass m moves through a gas, there is a frictional force proportional to v such that $F(v) = -mbv$, where m and b are constants. Derive an expression for $x(t)$ of this object with the initial conditions $v_0 = v(t_0)$ and $x_0 = x(t_0)$ at $t = t_0$ in two ways:

(a) by applying separation of variables, and

(b) by finding the general solution

$$x(t) = \sum_{i=1}^{2} c_i e^{\lambda_i t}$$

of a second order linear homogeneous differential equation that has the characteristic equation in terms of λ with roots λ_i.